Создание модели idef0 для организации учебного процесса. IDEF0 диаграмма: примеры и правила построения

IDEF0 - нотация графического моделирования, используемая для создания функциональной модели, отображающей структуру и функции системы, а также потоки информации и материальных объектов, связывающие эти функции. Нотация IDEF0 является одной из самых популярных нотаций моделирования бизнес-процессов.

Целью методики является построение функциональной схемы исследуемой системы, описывающей все необходимые процессы с точностью, достаточной для однозначного моделирования деятельности системы.

В основе методологии лежат четыре основных понятия: функциональный блок, интерфейсная дуга, декомпозиция, глоссарий .

Функциональный блок (Activity Box) представляет собой некоторую конкретную функцию в рамках рассматриваемой системы. По требованиям стандарта название каждого функционального блока должно быть сформулировано в глагольном наклонении (например, "производить услуги"). На диаграмме функциональный блок изображается прямоугольником (Рис. 3.).

Каждая из четырех сторон функционального блока имеет свое определенное значение (роль), при этом:

Верхняя сторона имеет значение "Управление" (Control);

Левая сторона имеет значение "Вход" (Input);

Правая сторона имеет значение "Выход" (Output);

Нижняя сторона имеет значение "Механизм" (Mechanism).

Интерфейсная дуга (Arrow) отображает элемент системы, который обрабатывается функциональным блоком или оказывает иное влияние на функцию , представленную данным функциональным блоком. Интерфейсные дуги часто называют потоками или стрелками.

Рис. 3. - Функциональный блок

С помощью интерфейсных дуг отображают различные объекты, в той или иной степени определяющие процессы, происходящие в системе. Такими объектами могут быть элементы реального мира (детали, вагоны, сотрудники и т.д.) или потоки данных и информации (документы, данные, инструкции и т.д.).

В зависимости от того, к какой из сторон функционального блока подходит данная интерфейсная дуга, она носит название "входящей", "исходящей" или "управляющей".

Необходимо отметить, что любой функциональный блок по требованиям стандарта должен иметь, по крайней мере, одну управляющую интерфейсную дугу и одну исходящую. Это и понятно - каждый процесс должен происходить по каким-то правилам (отображаемым управляющей дугой) и должен выдавать некоторый результат (выходящая дуга), иначе его рассмотрение не имеет никакого смысла.

Обязательное наличие управляющих интерфейсных дуг является одним из главных отличий стандарта IDEF0 от других методологий классов DFD (Data Flow Diagram) и WFD (Work Flow Diagram).

Декомпозиция (Decomposition) является основным понятием стандарта IDEF0. Принцип декомпозиции применяется при разбиении сложного процесса на составляющие его функции . При этом уровень детализации процесса определяется непосредственно разработчиком модели.


Декомпозиция позволяет постепенно и структурировано представлять модель системы в виде иерархической структуры отдельных диаграмм, что делает ее менее перегруженной и легко усваиваемой (Рис.4.).

Последним из понятий IDEF0 является глоссарий (Glossary). Для каждого из элементов IDEF0 — диаграмм, функциональных блоков, интерфейсных дуг — существующий стандарт подразумевает создание и поддержание набора соответствующих определений, ключевых слов, повествовательных изложений и т.д., которые характеризуют объект, отображенный данным элементом. Этот набор называется глоссарием и является описанием сущности данного элемента. Глоссарий гармонично дополняет наглядный графический язык, снабжая диаграммы необходимой дополнительной информацией.

Модель IDEF0 всегда начинается с представления системы как единого целого - одного функционального блока с интерфейсными дугами, простирающимися за пределы рассматриваемой области. Такая диаграмма с одним функциональным блоком называется контекстной диаграммой .

В пояснительном тексте к контекстной диаграмме должна быть указана цель (Purpose) построения диаграммы в виде краткого описания и зафиксирована точка зрения.

Рис. 4. - Схема декомпозиции функциональных блоков модели

Определение и формализация цели разработки IDEF0-модели является крайне важным моментом. Фактически цель определяет соответствующие области в исследуемой системе, на которых необходимо фокусироваться в первую очередь.

Точка зрения определяет основное направление развития модели и уровень необходимой детализации .

Четкое фиксирование точки зрения позволяет разгрузить модель, отказавшись от детализации и исследования отдельных элементов, не являющихся необходимыми, исходя из выбранной точки зрения на систему. Правильный выбор точки зрения существенно сокращает временные затраты на построение конечной модели.

Выделение подпроцессов . В процессе декомпозиции функциональный блок, который в контекстной диаграмме отображает систему как единое целое, подвергается детализации на другой диаграмме. Получившаяся диаграмма второго уровня содержит функциональные блоки, отображающие главные подфункции функционального блока контекстной диаграммы, и называется дочерней (Child Diagram) по отношению к нему (каждый из функциональных блоков, принадлежащих дочерней диаграмме, соответственно называется дочерним блоком - Child Box).

В свою очередь, функциональный блок — предок называется родительским блоком по отношению к дочерней диаграмме (Parent Box), а диаграмма, к которой он принадлежит - родительской диаграммой (Parent Diagram). Каждая из подфункций дочерней диаграммы может быть далее детализирована путем аналогичной декомпозиции соответствующего ей функционального блока. В каждом случае декомпозиции функционального блока все интерфейсные дуги, входящие в данный блок или исходящие из него, фиксируются на дочерней диаграмме. Этим достигается структурная целостность IDEF0-модели.

Иногда отдельные интерфейсные дуги высшего уровня не имеет смысла продолжать рассматривать на диаграммах нижнего уровня, или наоборот — отдельные дуги нижнего отражать на диаграммах более высоких уровней - это будет только перегружать диаграммы и делать их сложными для восприятия. Для решения подобных задач в стандарте IDEF0 предусмотрено понятие туннелирования. Обозначение "туннеля" (Arrow Tunnel) в виде двух круглых скобок вокруг начала интерфейсной дуги обозначает, что эта дуга не была унаследована от функционального родительского блока и появилась (из "туннеля") только на этой диаграмме.

В свою очередь, такое же обозначение вокруг конца (стрелки) интерфейсной дуги в непосредственной близи от блока-приемника означает тот факт, что в дочерней по отношению к этому блоку диаграмме эта дуга отображаться и рассматриваться не будет. Чаще всего бывает, что отдельные объекты и соответствующие им интерфейсные дуги не рассматриваются на некоторых промежуточных уровнях иерархии, - в таком случае они сначала "погружаются в туннель", а затем при необходимости "возвращаются из туннеля".

Обычно IDEF0-модели несут в себе сложную и концентрированную информацию, и для того, чтобы ограничить их перегруженность и сделать удобочитаемыми, в стандарте приняты соответствующие ограничения сложности.

Рекомендуется представлять на диаграмме от трех до шести функциональных блоков, при этом количество подходящих к одному функциональному блоку (выходящих из одного функционального блока) интерфейсных дуг предполагается не более четырех.

Стандарт IDEF0 содержит набор процедур, позволяющих разрабатывать и согласовывать модель большой группой людей, принадлежащих к разным областям деятельности моделируемой системы.

Обычно процесс разработки является итеративным и состоит из следующих условных этапов : Создание модели группой специалистов, относящихся к различным сферам деятельности предприятия. Эта группа в терминах IDEF0 называется авторами (Authors). Построение первоначальной модели является динамическим процессом, в течение которого авторы опрашивают компетентных лиц о структуре различных процессов, создавая модели деятельности подразделений.

При этом их интересуют ответы на следующие вопросы:

Что поступает в подразделение "на входе"?

Какие функции и в какой последовательности выполняются в рамках подразделения?

Кто является ответственным за выполнение каждой из функций ?

Чем руководствуется исполнитель при выполнении каждой из функций ?

Что является результатом работы подразделения (на выходе)?

На основе имеющихся положений, документов и результатов опросов создается черновик (Model Draft) модели.

Распространение черновика для рассмотрения, согласований и комментариев. На этой стадии происходит обсуждение черновика модели с широким кругом компетентных лиц (в терминах IDEF0 — читателей) на предприятии. При этом каждая из диаграмм черновой модели письменно критикуется и комментируется, а затем передается автору. Автор, в свою очередь, также письменно соглашается с критикой или отвергает ее с изложением логики принятия решения и вновь возвращает откорректированный черновик для дальнейшего рассмотрения. Этот цикл продолжается до тех пор, пока авторы и читатели не придут к единому мнению.

Официальное утверждение модели. Утверждение согласованной модели происходит руководителем рабочей группы в том случае, если у авторов модели и читателей отсутствуют разногласия по поводу ее адекватности. Окончательная модель представляет собой согласованное представление о предприятии (системе) с заданной точки зрения и для заданной цели.

Наглядность графического языка IDEF0 делает модель вполне читаемой и для лиц, которые не принимали участия в проекте ее создания, а также эффективной для проведения показов и презентаций. В дальнейшем на базе построенной модели могут быть организованы новые проекты, нацеленные на производство изменений в модели.

Модель IDEF0 рекомендована к применению в предприятии при описании бизнес-процессов на верхнем уровне. При составлении функциональной модели бизнес-процесса (IDEF0) описываются выполняемые функции и входные, выходные потоки материальных, финансовых ресурсов и информации (документов, файлов).

Условные обозначения формата IDEF0 представлены в таблицах 2,3.

Таблица 2. - Графические символы нотации IDEF0

Символ Изображение Описание
Блок Блок описывает процесс. Типичный блок показан на рис. 1. Внутри каждого блока помещается его имя и номер. Имя должно быть активным глаголом, глагольным оборотом или отглагольным существительным. Номер блока размещается в правом нижнем углу. Номера блоков используются для идентификации на диаграмме и в соответствующем тексте.
Стрелка Стрелки обозначают входящие и исходящие из процесса объекты (данные). Каждая сторона функционального блока имеет стандартное значение с точки зрения связи блок-стрелка, В свою очередь, сторона блока, к которой присоединена стрелка, однозначно определяет ее роль. Стрелки, входящие в левую сторону блока - входы. Стрелки, входящие в блок сверху - управления. Стрелки, покидающие процесс справа - выходы, т.е. данные или материальные объекты, произведенные процессом. Стрелки, подключенные к нижней стороне блока, представляют механизмы.
Туннелированная стрелка Туннелированные стрелки означают, что данные, обозначаемые этими стрелками, не рассматриваются на родительской диаграмме и/или на дочерней диаграмме. Стрелка, помещенная в туннель там, где она присоединяется к блоку, означает, что данные, выраженные этой стрелкой, не обязательны на следующем уровне декомпозиции. Стрелка, помещаемая в туннель на свободном конце означает, что выраженные ею данные отсутствуют на родительской диаграмме.
Внешняя ссылка Внешняя ссылка - место, сущность или субъект, которые находятся за границами моделируемой системы. Используются для обозначения источника или приемника стрелки вне модели. На диаграммах Внешняя ссылка изображается в виде квадрата, рядом с которым показано наименование Внешней ссылки.
Междиаграммная ссылка Элемент, обозначающий другую диаграмму. Служит для обозначения перехода стрелок на диаграмму другого бизнес-процесса без показа стрелки на вышележащей диаграмме (при использовании иерархических моделей).

Таблица 3. - Графические символы нотации IDEF0

IDEF0 - нотация графического моделирования, используемая для создания функциональной модели, отображающей структуру и функции системы, а также потоки информации и материальных объектов, связывающих эти функции. Стандарт IDEF0 (Integration Definition for Function Modeling) утвержден в США в 1993 как Федеральный стандарт обработки информации. В России находится в статусе руководящего документа с 2000 года и в настоящее время в качестве стандарта не утвержден. Тем не менее методология IDEF0 является одним из популярных подходов для описания бизнес-процессов. К ее особенностям можно отнести:

    использование контекстной диаграммы;

    поддержка декомпозиции;

    доминирование;

    выделение 4 типов стрелок.

Контекстная диаграмма. Самая верхняя диаграмма, на которой объект моделирования представлен единственным блоком с граничными стрелками. Эта диаграмма называется A-0 (А минус нуль). Стрелки на этой диаграмме отображают связи объекта моделирования с окружающей средой. Диаграмма A-0 устанавливает область моделирования и ее границу. Пример диаграммы A-0 приведен на Рис. 1.

Рисунок 1. Диаграмма A-0 в нотации IDEF0

Поддержка декомпозиции. Нотация IDEF0 поддерживает последовательную декомпозицию процесса до требуемого уровня детализации. Дочерняя диаграмма, создаваемая при декомпозиции, охватывает ту же область, что и родительский процесс, но описывает ее более подробно. Согласно методологии IDEF0 при декомпозиции стрелки родительского процесса переносятся на дочернюю диаграмму в виде граничных стрелок.

Доминирование. Блоки модели IDEF0 на неконтекстной диаграмме должны располагаться по диагонали - от левого верхнего угла диаграммы до правого нижнего в порядке присвоенных номеров. Блоки на диаграмме, расположенные вверху слева, "доминируют" над блоками, расположенными внизу справа. "Доминирование" понимается как влияние, которое блок оказывает на другие блоки диаграммы. Расположение блоков на листе диаграммы отражает авторское понимание доминирования. Таким образом, топология диаграммы показывает, какие функции оказывают большее влияние на остальные.

Выделение 4 типов стрелок. Выделяются следующие типы стрелок: "Вход", "Выход", "Механизм", "Управление". Входы преобразуются или расходуются процессом, чтобы создать то, что появится на его выходе. Управления определяют условия, необходимые процессу, чтобы произвести правильный выход. Выходы - данные или материальные объекты, произведенные процессом. Механизмы идентифицируют средства, поддерживающие выполнение процесса. Таким образом, блок IDEF0 показывает преобразование входа в выход с помощью механизмов с учетом управляющих воздействий.

Описание назначения графических символов, используемых в нотации IDEF0, приведено в Таблице 1.

Название Графический символ Описание
Процесс обозначается прямоугольным блоком. Внутри каждого блока помещается его имя и номер. Имя должно быть активным глаголом, глагольным оборотом или отглагольным существительным. Номер блока размещается в правом нижнем углу. Номера блоков используются для идентификации на диаграмме и в соответствующем тексте.
Стрелки обозначают входящие и исходящие из процесса объекты (данные).
Каждая сторона функционального блока имеет стандартное значение с точки зрения связи блок-стрелка. В свою очередь, сторона блока, к которой присоединена стрелка, однозначно определяет ее роль. Стрелки, входящие в левую сторону блока - входы. Стрелки, входящие в блок сверху - управления. Стрелки, покидающие процесс справа - выходы, т.е. данные или материальные объекты, произведенные процессом. Стрелки, подключенные к нижней стороне блока, представляют механизмы.
Туннелированная стрелка Туннелированные стрелки означают, что данные, передаваемые с помощью этих стрелок, не рассматриваются на родительской диаграмме и/или на дочерней диаграмме.
Стрелка, помещенная в туннель там, где она присоединяется к блоку, означает, что данные, выраженные этой стрелкой, не обязательны на следующем уровне декомпозиции.
Стрелка, помещаемая в туннель на свободном конце, означает, что выраженные ею данные отсутствуют на родительской диаграмме.
Туннелированные стрелки могут быть использованы на диаграммах процессов в нотациях IDEF0, "Процесс", "Процедура".
Элемент обозначает место, сущность или субъект, которые находятся за границами моделируемой системы. Внешние ссылки используются для обозначения источника или приемника стрелки вне модели. На диаграммах внешняя ссылка изображается в виде квадрата, рядом с которым показано наименование Внешней ссылки.
Внешние ссылки могут быть использованы на диаграммах процессов в любых нотациях.
Элемент, обозначающий другую диаграмму. Междиаграммная ссылка служит для обозначения перехода стрелки на диаграмму другого процесса без отображения стрелки на вышележащей диаграмме (при использовании иерархических моделей).
В качестве междиаграммной ссылки не может выступать диаграмма процесса в нотациях EPC и BPMN. Междиаграммные ссылки могут быть использованы на диаграммах процессов в нотациях IDEF0, "Процесс", "Процедура".
Элемент обозначает ссылку на типовую модель процесса.
Наиболее часто повторяющиеся процессы в рамках модели бизнес-процессов могут быть выделены в качестве типовых в отдельную папку в Навигаторе . Диаграмма типового процесса формируется один раз в одном месте Навигатора . Далее на любой диаграмме может быть использован процесс-ссылка на типовой процесс.
Параметры типового процесса заполняются непосредственно в Окне свойств типового процесса.
Постоянный список субъектов, принимающих участие в выполнении типового процесса, формируется также в Окне свойств типового процесса. Список субъектов, принимающих участие при выполнении типового процесса в рамках вышележащего процесса, формируется в Окне свойств процесса-ссылки на типовой процесс.
Процессы-ссылки могут быть использованы на диаграммах процессов в любых нотациях.
Выносной элемент, предназначенный для нанесения комментариев.
Элемент может быть использован на диаграммах процессов в любых нотациях.
6.2. Назначение и состав методологии SADT (IDEF0)

Методология SADT (Structured Analysis and Design Technique – методология структурного анализа и проектирования) представляет собой совокупность методов, правил и процедур, предназначенных для построения функциональной модели системы.

Начало разработки данной методологии было положено Дугласом Россом (США) в середине 60-х гг. ХХ в. С тех пор системные аналитики компании SofTech, Inc. улучшили SADT и использовали ее в решении широкого круга проблем. Программное обеспечение телефонных сетей, диагностика, долгосрочное и стратегическое планирование, автоматизированное производство и проектирование, конфигурация компьютерных систем, обучение персонала, управление финансами и материально-техническим снабжением – вот некоторые из областей эффективного применения SADT. Широкий спектр областей указывает на универсальность и мощь методологии SADT. В программе «Интеграции компьютерных и промышленных технологий» (Integrated Computer Aided Manufacturing, ICAM) Министерства обороны США была признана полезность SADT. Это привело к публикации ее части в 1981 г., называемой IDEF0 (Icam DEFinition), в качестве федерального стандарта на разработку программного обеспечения. Под этим названием SADT стала применяться тысячами специалистов в военных и промышленных организациях . Последняя редакция стандарта IDEF0 была выпущена в декабре 1993г. Национальным институтом по стандартам и технологиям США (National Institute Standards and Technology, NIST).

Данная методология при описании функционального аспекта информационной системы конкурирует с методами, ориентированными на потоки данных (DFD). В отличие от них IDEF0 позволяет:

Описывать любые системы, а не только информационные (DFD предназначена для описания программного обеспечения);

Создать описание системы и ее внешнего окружения до определения окончательных требований к ней. Иными словами, с помощью данной методологии можно постепенно выстраивать и анализировать систему даже тогда, когда трудно еще представить ее воплощение.

Таким образом, IDEF0 может применяться на ранних этапах создания широкого круга систем. В то же время она может быть использована для анализа функций существующих систем и выработки решений по их улучшению.

Основу методологии IDEF0 составляет графический язык описания процессов. Модель в нотации IDEF0 представляет собой совокупность иерархически упорядоченных и взаимосвязанных диаграмм. Каждая диаграмма является единицей описания системы и располагается на отдельном листе.

Модель (AS-IS, TO-BE или SHOULD-BE) может содержать 4 типа диаграмм [ , ]:

Контекстную диаграмму;

Диаграммы декомпозиции;

Диаграммы дерева узлов;

Диаграммы только для экспозиции (for exposition only, FEO).

Контекстная диаграмма (диаграмма верхнего уровня), являясь вершиной древовидной структуры диаграмм, показывает назначение системы (основную функцию) и ее взаимодействие с внешней средой. В каждой модели может быть только одна контекстная диаграмма. После описания основной функции выполняется функциональная декомпозиция, т. е. определяются функции, из которых состоит основная.

Далее функции делятся на подфункции и так до достижения требуемого уровня детализации исследуемой системы. Диаграммы, которые описывают каждый такой фрагмент системы, называются диаграммами декомпозиции . После каждого сеанса декомпозиции проводятся сеансы экспертизы – эксперты предметной области указывают на соответствие реальных процессов созданным диаграммам. Найденные несоответствия устраняются, после чего приступают к дальнейшей детализации процессов.

Диаграмма дерева узлов показывает иерархическую зависимость функций (работ), но не связи между ними. Их может быть несколько, поскольку дерево можно построить на произвольную глубину и с произвольного узла.

Диаграммы для экспозиции строятся для иллюстрации отдельных фрагментов модели с целью отображения альтернативной точки зрения на происходящие в системе процессы (например, с точки зрения руководства организации).

6.3. Элементы графической нотации IDEF0

Методология IDEF0 нашла широкое признание и применение, в первую очередь, благодаря простой графической нотации, используемой для построения модели. Главными компонентами модели являются диаграммы. На них отображаются функции системы в виде прямоугольников, а также связи между ними и внешней средой посредством стрелок. Использование всего лишь двух графических примитивов (прямоугольник и стрелка) позволяют быстро объяснить правила и принципы построения диаграмм IDEF0 людям, незнакомым с данной методологией. Это достоинство позволяет подключить и активизировать деятельность заказчика по описанию бизнес-процессов с использованием формального и наглядного графического языка.

На следующем рисунке показаны основные элементы графической нотации IDEF0 .

Рис. 6.1. Элементы графической нотации IDEF0

Прямоугольник представляет собой работу (процесс, деятельность, функцию или задачу) , которая имеет фиксированную цель и приводит к некоторому конечному результату. Имя работы должно выражать действие (например, «Изготовление детали», «Расчет допускаемых скоростей», «Формирование ведомости ЦДЛ № 3»).

Взаимодействие работ между собой и внешним миром описывается в виде стрелок. В IDEF0 различают 5 видов стрелок :

- вход (англ. input) – материал или информация, которые используются и преобразуются работой для получения результата (выхода). Вход отвечает на вопрос «Что подлежит обработке?». В качестве входа может быть как материальный объект (сырье, деталь, экзаменационный билет), так и не имеющий четких физических контуров (запрос к БД, вопрос преподавателя). Допускается, что работа может не иметь ни одной стрелки входа. Стрелки входа всегда рисуются входящими в левую грань работы;

- управление (англ. control) – управляющие, регламентирующие и нормативные данные, которыми руководствуется работа. Управление отвечает на вопрос «В соответствии с чем выполняется работа?». Управление влияет на работу, но не преобразуется ей, т.е. выступает в качестве ограничения. В качестве управления могут быть правила, стандарты, нормативы, расценки, устные указания. Стрелки управления рисуются входящими в верхнюю грань работы. Если при построении диаграммы возникает вопрос, как правильно нарисовать стрелку сверху или слева, то рекомендуется ее рисовать как вход (стрелка слева);

- выход (англ. output) – материал или информация, которые представляют результат выполнения работы. Выход отвечает на вопрос «Что является результатом работы?». В качестве выхода может быть как материальный объект (деталь, автомобиль, платежные документы, ведомость), так и нематериальный (выборка данных из БД, ответ на вопрос, устное указание). Стрелки выхода рисуются исходящими из правой грани работы;

- механизм (англ. mechanism) – ресурсы, которые выполняют работу. Механизм отвечает на вопрос «Кто выполняет работу или посредством чего?». В качестве механизма могут быть персонал предприятия, студент, станок, оборудование, программа. Стрелки механизма рисуются входящими в нижнюю грань работы;

- вызов (англ. call) – стрелка указывает, что некоторая часть работы выполняется за пределами рассматриваемого блока. Стрелки выхода рисуются исходящими из нижней грани работы.

6.4. Типы связей между работами

После определения состава функций и взаимосвязей между ними, возникает вопрос о правильной их композиции (объединении) в модули (подсистемы). При этом подразумевается, что каждая отдельная функция должна решать одну, строго определенную задачу. В противном случае необходима дальнейшая декомпозиция или разделение функций.

При объединении функций в подсистемы необходимо стремиться, чтобы внутренняя связность (между функциями внутри модуля) была как можно сильнее, а внешняя (между функциями, входящими в разные модули), как можно слабее. Опираясь на семантику связей методологии , введем классификацию связей между функциями (работами). Данная классификация является расширением . Типы связей приводятся в порядке уменьшения их значимости (силы связывания). В приводимых примерах утолщенными линиями выделяются функции, между которыми имеется рассматриваемый тип связи.

1. Иерархическая связь (связь «часть» – «целое») имеет место между функцией и подфункциями, из которых она состоит.

Рис. 6.2. Иерархическая связь

2. Регламентирующая (управляющая, подчиненная) связь отражает зависимость одной функции от другой, когда выход одной работы направляется на управление другой. Функцию, из которой выходит управление, следует считать регламентирующей или управляющей, а в которую входит – подчиненной. Различают прямую связь по управлению , когда управление передается с вышестоящей работы на нижестоящую (рис. 6.3), и обратную связь по управлению , когда управление передается от нижестоящей к вышестоящей (рис. 6.4).

3. Функциональная (технологическая) связь имеет место, когда выход одной функции служит входными данными для следующей функции. С точки зрения потока материальных объектов данная связь показывает технологию (последовательность работ) обработки этих объектов. Различают прямую связь по входу , когда выход передается с вышестоящей работы на нижестоящую (рис. 6.5), и обратную связь по входу , когда выход передается с нижестоящей к вышестоящей (рис.6.6).



Рис. 6.5. Прямая связь по входу Рис. 6.6. Обратная связь по входу

4. Потребительская связь имеет место, когда выход одной функции служит механизмом для следующей функции. Таким образом, одна функция потребляет ресурсы, вырабатываемые другой.

Рис. 6.7. Потребительская связь

5. Логическая связь наблюдается между логически однородными функциями. Такие функции, как правило, выполняют одну и ту же работу, но разными (альтернативными) способами или, используя разные исходные данные (материалы).

Рис. 6.8. Логическая связь

6. Коллегиальная (методическая) связь имеет место между функциями, алгоритм работы которых определяется одним и тем же управлением. Аналогом такой связи является совместная работа сотрудников одного отдела (коллег), подчиняющихся начальнику, который отдает указания и приказы (управляющие сигналы). Такая связь также возникает, когда алгоритмы работы этих функций определяются одним и тем же методическим обеспечением (СНИП, ГОСТ, официальными нормативными материалами и т. д.), служащим в качестве управления.

Рис. 6.9. Методическая связь

7. Ресурсная связь возникает между функциями, использующими для своей работы одни и те же ресурсы. Ресурсно-зависимые функции, как правило, не могут выполняться одновременно.

Рис. 6.10. Ресурсная связь

8. Информационная связь имеет место между функциями, использующими в качестве входных данных одну и ту же информацию.

Рис. 6.11. Информационная связь

9. Временная связь возникает между функциями, которые должны выполняться одновременно до или одновременно после другой функции.

Кроме указанных на рисунке случаев, эта связь имеет место также между другими сочетаниями управления, входа и механизма, поступающими в одну функцию.

Рис. 6.12. Временная связь

10. Случайная связь возникает, когда конкретная связь между функциями мала или полностью отсутствует.

Рис. 6.13. Случайная связь

Из приведенных выше типов связей наиболее сильной является иерархическая связь, которая, по сути, и определяет объединение функций в модули (подсистемы). Несколько слабее являются регламентирующие, функциональные и потребительские связи. Функции с этими связями обычно реализуются в одной подсистеме. Логические, коллегиальные, ресурсные и информационные связи одни из самых слабых. Функции, обладающие ими, как правило, реализуют в разных подсистемах, за исключением логически однородных функций (функций, связанных логической связью). Временная связь свидетельствует о слабой зависимости функций друг от друга и требует их реализации в отдельных модулях.

Таким образом, при объединении функций в модули наиболее желательными являются первые пять видов связей. Функции, связанные последними пятью связями, лучше реализовывать в отдельных модулях.

В IDEF0 существуют соглашения (правила и рекомендации) по созданию диаграмм, которые призваны облегчить чтение и экспертизу модели [ , ]. Некоторые из этих правил CASE-средства поддерживают автоматически, выполнение других следует обеспечить вручную.

1. Перед построением модели необходимо определиться, какая модель (модели) системы будет построена. Это подразумевает определение ее типа AS-IS, TO-BE или SHOULD-BE, а также определения позиции, с точки зрения которой строится модель. «Точку зрения» лучше всего представлять себе как место (позицию) человека или объекта, в которое надо встать, чтобы увидеть систему в действии. Например, при построении модели работы продуктового магазина можно среди возможных претендентов, с точки зрения которых рассматривается система, выбрать продавца, кассира, бухгалтера или директора. Обычно выбирается одна точка зрения, наиболее полно охватывающая все нюансы работы системы, и при необходимости для некоторых диаграмм декомпозиции строятся диаграммы FEO, отображающие альтернативную точку зрения.

2. На контекстной диаграмме отображается один блок, показывающий назначение системы. Для него рекомендуется отображать по 2–4 стрелки, входящие и выходящие с каждой стороны.

3. Количество блоков на диаграммах декомпозиции рекомендуется в пределах 3–6. Если на диаграмме декомпозиции два блока, то она, как правило, не имеет смысла. При наличии большого количества блоков диаграмма становится перенасыщенной и трудно читаемой.

4. Блоки на диаграмме декомпозиции следует располагать слева направо и сверху вниз. Такое расположение позволяет более четко отразить логику и последовательность выполнения работ. Кроме этого маршруты стрелок будут менее запутанными и иметь минимальное количество пересечений.

5. Отсутствие у функции одновременно стрелок управления и входа не допускается. Это означает, что запуск данной функции не контролируется и может произойти в любой произвольный момент времени либо вообще никогда.

Рис. 6.14. Функция без управления и входа

Блок с наличием только управления можно рассматривать как вызов в программе функции (процедуры) без параметров. Если у блока имеется вход, то он эквивалентен вызову в программе функции с параметрами. Таким образом, блок без управления и входа эквивалентен функции, которая в программе ни разу не вызывается на исполнение.

На рис. 6.7–6.12, отображающих фрагменты диаграмм IDEF0, встречаются блоки без входа и управления. Это не стоит рассматривать как ошибку, так как подразумевается, что одна из этих стрелок должна быть.

6. У каждого блока должен быть как минимум один выход.

Рис. 6.15. Функция без выхода

Работы без результата не имеют смысла и не должны моделироваться. Исключение составляют работы, отображаемые в модели AS-IS. Их наличие свидетельствует о неэффективности и несовершенстве технологических процессов. В модели TO-BE эти работы должны отсутствовать.

7. При построении диаграмм следует минимизировать число пересечений, петель и поворотов стрелок.

8. Обратные связи и итерации (циклические действия) могут быть изображены с помощью обратных дуг. Обратные связи по входу рисуются «нижней» петлей, обратная связь по управлению – «верхней» (см. рис. 6.4 и 6.6).

9. Каждый блок и каждая стрелка на диаграммах должны обязательно иметь имя. Допускается использовать ветвление (декомпозицию) или слияние (композицию) стрелок. Это связано с тем, что одни и те же данные или объекты, порожденные одной работой, могут использоваться сразу в нескольких других работах. И наоборот, одинаковые или однородные данные и объекты, порожденные разными работами, могут использоваться в одном месте.

Рис. 6.16. Ветвление стрелок

При этом допускается задание различным ветвям стрелки уточняющих имен после разветвления (до слияния). Если какая-либо ветвь после ветвления не именована, то считается, что ее имя соответствует имени стрелки, записанному до ветвления.

Так, на рис. 6.16 управления, входящие в блоки «Изготовление деталей» и «Сборка изделия», имеют уточняющие значения и являются составной частью более общего управления «Чертежи». Для работы блока «Контроль качества» используются все чертежи.

На диаграмме не допускается рисовать стрелки, когда до и после ветвления они не именованы. На рис. 6.17 стрелка, входящая в блок «Формирование типовых ведомостей», не имеет имени до и после ветвления, что является ошибкой.

Рис. 6.17. Неправильное именование стрелок

10. При построении диаграмм для лучшей их читаемости может использоваться механизм туннелирования стрелок. Например, чтобы не загромождать лишними деталями диаграммы верхних уровней (родительские), на диаграммах декомпозиции начало дуги помещают в тоннель.

Рис. 6.18. Туннелирование стрелок

В данном примере при построении модели проведения новогоднего утренника механизм «два топора» не будет отображаться на диаграммах верхних уровней, при чтении которых может возникнуть справедливый вопрос: «А зачем нужны два топора на новогоднем утреннике?».

Аналогичным образом можно выполнять туннелирование с обратной целью – недопущения отображения стрелки на диаграммах низших уровней. В этом случае круглые скобки ставятся на конце стрелки. На контекстной диаграмме (см. рис. 6.21) затуннелирован механизм «Инженер службы пути», входящий в блок «Определение допускаемых скоростей». Такое решение принято, так как инженер непосредственно участвует во всех работах, отображенных на диаграмме декомпозиции этого блока (см. рис. 6.22). Чтобы не показывать эту связь и не загромождать диаграмму декомпозиции, стрелка была затуннелирована.

11. Все стрелки, входящие и выходящие из блока, при построении для него диаграммы декомпозиции должны быть отображены на ней. Исключение составляют затуннелированные стрелки. Имена стрелок, перенесенных на диаграмму декомпозиции, должны совпадать с именами, указанными на диаграмме верхнего уровня.

12. Если две стрелки проходят параллельно (начинаются из одной и той же грани одной работы и заканчиваются на одной и той же грани другой работы), то по возможности следует их объединить и называть единым термином.

Рис. 6.19. Объединение связей

13. Каждый блок на диаграммах должен иметь свой номер. Для того чтобы указать положение любой диаграммы или блока в иерархии, используются номера диаграмм. Блок на диаграмме верхнего уровня обозначается 0, блоки на диаграммах второго уровня – цифрами от 1 до 9 (1, 2, …, 9), блоки на третьем уровне – двумя цифрами, первая из которых указывает на номер детализируемого блока с родительской диаграммы, а вторая номер блока по порядку на текущей диаграмме (11, 12, 25, 63) и т. д. Контекстная диаграмма имеет обозначение «А – 0», диаграмма декомпозиции первого уровня – «А0», диаграммы декомпозиции следующих уровней – состоят из буквы «А», за которой следует номер декомпозируемого блока (например, «А11», «А12», «А25», «А63»). На рисунке показано типичное дерево диаграмм (диаграмма дерева узлов) с нумерацией.

Рис. 6.20. Иерархия диаграмм

В современных CASE-средствах механизмы нумерации работ поддерживается автоматически. CASE-средства обеспечивают также автоматическое построение диаграмм дерева узлов, которые содержат только иерархические связи. Вершиной такой диаграммы может быть любой узел (блок), и она может быть построена на любую глубину.

6.6. Пример построения модели IDEF0 для системы определения допускаемых скоростей

Расчет допускаемых скоростей движения поездов является трудоемкой инженерной задачей. При проходе поездом какого-либо участка фактическая скорость движения поезда не должна превышать предельно допускаемую. Эта предельно допускаемая скорость устанавливается исходя из опыта эксплуатации и специально проводимых испытаний по динамике движения и воздействию на путь подвижного состава. Непревышение этой скорости гарантирует безопасность движения поездов, комфортабельные условия езды пассажиров и т. п. Они определяются в зависимости от типа подвижного состава (марки локомотива и типа вагонов), параметров верхнего строения пути (типа рельсов, балласта, эпюры шпал) и плана (радиуса кривых, переходных кривых, возвышения наружного рельса и т. д.). Как правило, для установления допускаемых скоростей необходимо определить не менее двух (на прямых) и пяти (в кривых) скоростей, из которых и выбирается окончательная допускаемая скорость, как наименьшая из всех рассчитанных. Расчет этих скоростей регламентируются Приказом МПС России № 41 от 12 ноября 2001 г. «Нормы допускаемых скоростей движения подвижного состава по железнодорожным путям колеи 1520 (1524) мм Федерального железнодорожного транспорта».

Как было отмечено, построение модели IDEF0 начинается с представления всей системы в виде простейшей компоненты (контекстной диаграммы). Данная диаграмма отображает назначение (основную функцию) системы и необходимые входные и выходные данные, управляющую и регламентирующую информацию, а также механизмы.

Контекстная диаграмма для задачи определения допускаемых скоростей показана на рис.6.21. Для построения модели использовался продукт BPwin 4.0 фирмы Computer Associates.


Рис. 6.21. Контекстная диаграмма системы определения допускаемых скоростей (методология IDEF0)

В качестве исходной информации , на основе которой выполняется определение допускаемых скоростей, используются:

Данные проекта новой линии или проекта реконструкции (содержат всю необходимую информацию для реализации проекта, а именно километраж, оси раздельных пунктов, план линии и др.);

Подробный продольный профиль (содержит информацию, аналогичную рассмотренной выше);

Паспорт дистанции пути (содержит информацию, аналогичную рассмотренной выше, а также сведения о верхнем строении пути (ВСП));

Данные о результатах съемки плана пути вагоном-путеизмерителем;

Ведомость возвышений наружного рельса в кривых (содержит информацию о плане пути).

Часть исходной информации может быть взята из разных источников. В частности сведения о плане (параметрах кривых) могут быть взяты из проекта новой линии или проекта реконструкции, подробного продольного профиля, паспорта дистанции пути и т.д.

Управляющими данными являются:

Указание начальника службы пути дороги или Департамента пути и сооружений ОАО «РЖД» на расчет;

Приказ № 41, содержащий нормативно-справочную информацию, порядок и формулы определения допускаемых скоростей;

Сведения о текущем или планируемом поездопотоке (данные о марках обращающихся локомотивов и типах используемых вагонов);

Сведения о планируемых ремонтах пути, реконструкции и переустройстве сооружений и устройств.

Результатом работы системы должны быть:

Ведомости допускаемых скоростей, содержащие все типы рассчитанных скоростей и позволяющие установить причину их ограничения;

Ведомости Приказа начальника дороги об установлении допускаемых скоростей на перегонах и раздельных пунктах (Приказ «Н») согласно принятой на дороге форме. Утвержденный Приказ «Н» официально закрепляет допускаемые скорости движения поездов;

Типовые формы № 1, 1а и 2, содержащие планируемые допускаемые скорости для разработки графика движения поездов.

Скорости, содержащиеся в Приказе «Н» и типовых формах, могут отличаться от рассчитанных и показываемых в ведомостях допускаемых скоростей. Это связано с тем, что в них отражают ограничения скорости не только по конструкции подвижного состава, параметров ВСП и кривых, но и по состоянию устройств и сооружений (деформация земляного полотна, перекос опор контактной сети и т. д.). Кроме того, они корректируются с учетом планируемых ремонтов пути, реконструкции и переустройства сооружений и устройств и т.д.

После построения контекстная диаграмма детализируется с помощью диаграммы декомпозиции первого уровня. На этой диаграмме отображаются функции системы, которые должны быть реализованы в рамках основной функции. Диаграмма, для которой выполнена декомпозиция, по отношению к детализирующим ее диаграммам называется родительской . Диаграмма декомпозиции по отношению к родительской называется дочерней .

Диаграмма декомпозиции первого уровня для рассматриваемой задачи приведена на рис.6.22. Как правило, при построении диаграммы декомпозиции исходная функция (декомпозируемая) разбивается на 3–8 подфункций (блоков). При этом блоки на диаграмме декомпозиции рекомендуется располагать слева направо сверху вниз, чтобы лучше была видна последовательность и логика взаимодействия подфункций.


Рис. 6.22. Диаграмма декомпозиции первого уровня (методология IDEF0)

Очередность выполнения функций для решения рассматриваемой задачи следующая:

Ввод и корректировка нормативно-справочной информации и данных по участкам дороги (блоки 1 и 2);

Подготовка задания на расчет (блок 3). В нем указывается, для какого участка и пути, а также марки локомотива и типа вагонов следует выполнить расчет;

Расчет допускаемых скоростей в соответствии с порядком и формулами, указанными в Приказе № 41 (блок 4). В качестве исходной информации выступают данные по пути участка (план, верхнее строение пути и т. д.) и нормативы, выбираемые на основании задания на расчет;

Формирование ведомостей допускаемых скоростей (блок 5). На базе результатов расчета создаются несколько видов выходных документов, которые, с одной стороны, позволяют выявить причину ограничений скорости, с другой стороны, выступают в качестве основы для подготовки регламентированных документов;

Формирование и подготовка проекта Приказа «Н» и типовых ведомостей (блоки 6 и 7).

После построения диаграммы декомпозиции первого уровня для указанных на ней функций строятся отдельные диаграммы (диаграммы декомпозиции второго уровня). Затем процесс декомпозиции (построения диаграмм) продолжается до тех пор, пока дальнейшая детализация функций не теряет смысла. Для каждой атомарной функции, описывающей элементарную операцию (т. е. функции, не имеющей диаграмму декомпозиции), составляется подробная спецификация, определяющая ее особенности и алгоритм реализации. В качестве дополнения к спецификации могут использоваться блок-схемы алгоритмов. Таким образом, процесс функционального моделирования заключается в постепенном выстраивании иерархии функций.

6.7. ICOM-коды

Стрелки, входящие в блок и выходящие из него на диаграмме верхнего уровня, являются теми же самыми, что и стрелки, входящие в диаграмму нижнего уровня и выходящие из нее, потому что блок и диаграмма представляют одну и ту же часть системы (см. рис. и ). Как следствие этого, границы функции верхнего уровня – это то же самое, что и границы диаграммы декомпозиции.

ICOM-коды (аббревиатура от Input, Control, Output и Mechanism) предназначены для идентификации граничных стрелок. ICOM-код содержит префикс, соответствующий типу стрелки (I, С, О или М), и порядковый номер (см. рис.).

В настоящем разделе методика определения, классификации и идентификации процессов (раздел ____) реализована на базе методологии функционального моделирования IDEF0.

1. Определение деловых процессов в виде IDEF0-модели

1.1. Определение делового процесса.

На первом этапе описания необходимо определить деловые процессы в организации. Ключевым элементом в определении делового процесса является формулировка цели, которая отражает причину создания модели (описания) делового процесса и определяет ее назначение.

Примечания:

1 Цель модели заключается в фиксировании определенного угла зрения, под которым рассматривается и описывается деятельность организации. Для разных целей углы зрения могут быть разными, а модели процессов будут отличаться.

Например, при описании процессов на швейной фабрике могут быть сформулированы различные цели: оптимизация организационной структуры фабрики, формирование системы менеджмента качества, расширение видов деятельности и т.д.

2 Общей целью моделей в рамках настоящего документа является создание системы менеджмента качества, соответствующей требованиями СТБ ИСО 9000-2001, СТБ ИСО 9001-2001 и СТБ ИСО 9004-2001.

Для того чтобы выявить деловые процессы, необходимо определить следующее:

  • потребителей продукции и/или услуг организации;
  • продукцию и/или услуги, производимые в организации и поставляемые потребителям;
  • виды сырья и их поставщиков.

Примечание – Для различных видов продукции или различных категорий потребителей можно рассматривать различные деловые процессы.

Например, швейная фабрика производит (шьет) женские пальто, заключая договора с потребителями. Потребителями продукции являются магазины женской одежды и торгово-посреднические компании. Фабрика закупает сырье на текстильных предприятиях, а также у торгово-посреднических компаний.

Фабрика является закрытым акционерным обществом. Цель построения модели - создание системы менеджмента качества. На основании этой информации в деятельности швейной фабрики можно выделить один деловой процесс- «Производить женские пальто». Входами этого процесса являются: а) внешняя информация, включая требования потребителей (магазинов и компаний); б) сырье и материалы; в) ресурсы. Выходами процесса являются: а) партии готовой продукции, предназначенные для потребителей; б) информация для внешних потребителей. Управление процессом осуществляется на основании нормативных документов, регламентирующих производственные процессы на фабрике. Учитывая, что нас интересует процесс с точки зрения менеджмента качества, то в качестве внешнего управления будем рассматривать нормативные документы, регламентирующие эту сферу, в том числе требования СТБ ИСО 9000. Карта делового процесса на швейной фабрике представлена на рис. 3.

Рис. 3 Деловой процесс на швейной фабрике

1.2. Описание структуры делового процесса

На втором этапе определения делового процесса необходимо описать его внутреннюю структуру. Для этого необходимо определить:

  • из каких процессов состоит моделируемый деловой процесс;
  • как эти процессы взаимодействуют между собой.

В IDEF0 моделировании для описания внутренней структуры процесса используется механизм декомпозиции.

В соответствии с требованиями методологии IDEF0, для того чтобы декомпозировать деловой процесс, необходимо создать диаграмму – потомок. На этой диаграмме следует представить процессы, из которых состоит деловой процесс в рамках системы менеджмента качества (СМК).

Рассмотрим декомпозицию делового процесса «Производить женские пальто» (рис.3).

Учитывая цели моделирования - соответствие делового процесса требованиям СТБ ИСО 9001 - 2001 декомпозиция делового процесса включает 4 блока процессов, представленных на рис. 4.

В соответствии с требованиями СТБ ИСО 9000 деловой процесс «Производить женские пальто» включает следующие процессы:

– реализовать ответственность высшего руководства по менеджменту качества;

– осуществлять менеджмент ресурсов;

– реализовать процессы жизненного цикла;

– осуществлять измерения, анализ и улучшения СМК.

Примечание – На рисунке 4 не представлены взаимодействия между функциональными блоками, представляющими декомпозицию процесса «Производить женские пальто».1.3.Описание взаимодействий между процессами

Третьим этапом определения делового процесса является описание взаимодействий между процессами. Взаимодействие между процессами в IDEF0 описывается с помощью интерфейсных дуг и обозначает передачу материалов и/или информации с выходов одного процесса на входы (управления, механизмы) другого процесса.

В методологии IDEF0 допустимыми являются 5 (пять) типов взаимодействий между блоками в пределах одной диаграммы (табл.1):

  • управление;
  • выход – вход;
  • обратная связь по управлению;
  • обратная связь по входу;
  • выход - механизм.

Таблица 1

Взаимосвязь по управлению: выход одного процесса влияет на выполнение другого процесса, т.е. выходная дуга блока 1 является управляющей для блока 2. В СТБ ИСО 9001 такое взаимодействие определяет функцию управ-ления «ответственность руководства» по отношению к другим процессам

Взаимосвязь по входу: выход одного процесса является входом для другого, т.е. выходная дуга блока 1 является входной для блока 2. Это взаимодействие характерно для любых процессов в организации, например для процессов жизненного цикла

Обратная связь по управлению: выходы из одного процесса влияют на выполнение других процессов, выполнение которых в свою очередь влияет на выполнение исходного процесса. Выходная дуга блока 1 является управляющей для блока 2, а выходная дуга блока 2 является управляющей для блока 1.

В СТБ ИСО 9001 такое взаимодействие может определять:

– функцию управления «ответственность руководства»;

– функцию управления «управление процессами жизненного цикла»;

– функцию управления «измерение, анализ и улучшение»

Обратная связь по входу: выход из одного процесса является входом для другого процесса, выход которого является для него входом, т.е. выходная дуга блока 2 является входной для блока 1, выход которого является для него входом. В СТБ ИСО 9001-2001 такое взаимодействие может определять функцию управления «управление процессами жизненного цикла»

Взаимосвязь «выход - механизм»: выход одного процесса является механизмом для другого, т.е. выходная дуга блока 1 является дугой механизма для блока 2. Такой тип связи относится чаще всего к процессам обеспечения ресурсами. В СТБ ИСО 9001 такое взаимодействие может определять функцию управления «менеджмент ресурсов»

Практика показывает, что перечисленных пяти видов взаимодействий достаточно, чтобы определить взаимодействия между процессами любой сложности.

Описание взаимодействий в рамках функциональной модели процесса будет полным, когда для каждого функционального блока будут определены его интерфейсные дуги.

Примечание – Методология IDEF0 регламентирует, что каждый блок в модели должен содержать хотя бы по одной дуге входа, выхода, управления и механизма. В имеется короткий список исключений из этого правила.

Рассмотрим взаимодействия между процессами, составляющими деловой процесс «Производить женские пальто» (рис. 5).

Процесс «Реализовать ответственность высшего руководства по менеджменту качества» является управляющим процессом для всех остальных процессов. Соответственно, выход этого процесса- «Политика, цели, руководство по качеству, программы качества» является управляющим входом для всех остальных процессов, представленных на диаграмме (рис. 5).

Процесс «Осуществлять менеджмент ресурсов» имеет связь «выход - механизм» с процессами «Реализовать процессы жизненного цикла» и «Осуществлять измерения, анализ и улучшения СМК».

На диаграмме представлен контур обратной связи: выход процесса «Осуществлять измерения, анализ и улучшения СМК» с входом процесса «Реализовать ответственность высшего руководства по менеджменту качества»

Примечание – Правило полноты функциональной модели IDEF0 в точности соответствует требованиям СТБ ИСО 9001 в части того, что каждый процесс должен обеспечиваться ресурсами (дуги механизмов в IDEF0-модели), управляться (дуги управления), производить продукцию на выходе (выходные дуги), перерабатывая материалы и/или информацию, поступающие на его входы (входные дуги).

Рис.5 – Взаимодействия между процессами

Количество уровней детализации процесса определяется целями моделирования и спецификой деятельности моделируемой организации. В рамках настоящей методики основной целью моделирования процессов является анализ соответствия процесса требованиям системы менеджмента качества.

На диаграмме А0 (рис.5) деловой процесс «Производить женские пальто» представлен в виде 4 процессов. Диаграмма А0 является первым уровнем декомпозиции (детализации) для этого процесса. Каждый из 4 представленных процессов в свою очередь может быть декомпозирован. На рис. 6 представлена декомпозиция процесса «Реализовать процессы жизненного цикла».

На диаграмме А3 (рис. 6) процесс «Реализовать процессы жизненного цикла» представлен в виде шести процессов, включая «Осуществлять закупки», который также может быть декомпозирован (рис. 7).

Рис. 6.- Декомпозиция процесса «Реализовать процессы жизненного цикла»

Глоссарий процесса включает перечень процессов, объектов, обрабатываемых в рамках процессов, а также их определения.

Глоссарий представляет упорядоченный в алфавитном порядке список терминов. Каждому термину из этого списка соответствует определение или ссылка на соответствующее определение, приведенное в нормативных документах организации или вышестоящих органов, регламентах и т.п.

Например, для диаграммы А34 (рис. 7) фрагмент глоссария будет выглядеть следующим образом.

Методология функционального моделирования IDEF0 – это технология описания системы в целом как множества взаимозависимых действий или функций. Важно отметить ее функциональную направленность, т.е. IDEF0-функции системы исследуются независимо от объектов, которые обеспечивают их выполнение. "Функциональная" точка зрения позволяет четко отделить аспекты назначения системы от аспектов ее физической реализации. Пример диаграммы IDEF0 приведем на рис. 3.6.19 а, 3.6.19 б, 3.6.19 в, 3.6.19г.

Наиболее часто IDEF0 применяется как технология исследования и проектирования систем на логическом уровне. По этой причине IDEF0, как правило, используется на ранних этапах разработки проекта до IDEF3-моделирования, для сбора данных и моделирования процесса "как есть". Результаты IDEF0-анализа могут применяться при проведении проектирования с использованием моделей IDEF3 и диаграмм потоков данных DFD.

Первый шаг при построении модели IDEF0 заключается в определении цели или назначения модели – набора вопросов, на которые должна отвечать модель. Набор вопросов можно сравнить с предисловием, в котором раскрывается назначение книги.

Границы моделирования предназначены для обозначения ширины охвата предметной области и глубины детализации и являются логическим продолжением уже определенного назначения модели. Как читающий модель, так и непосредственно ее автор должны понимать степень детальности ответов на поставленные в назначении модели вопросы.

Следующим шагом указывается предполагаемая целевая аудитория, для нужд которой создается модель. Зачастую от выбора целевой аудитории зависит уровень детализации, с которым должна создаваться модель. Перед построением модели необходимо иметь представление о том, какие сведения о предмете моделирования уже известны, какие дополнительные материалы и (или) техническая документация для понимания модели могут быть необходимы целевой аудитории, какие язык и стиль изложения являются наиболее подходящими.

Под точкой зрения понимается перспектива, с которой наблюдалась система при построении модели. Точка зрения выбирается таким образом, чтобы учесть уже обозначенные границы моделирования и назначение модели. Однажды выбранная точка зрения остается неизменной для всех элементов модели. При необходимости могут быть созданы другие модели, отображающие систему с других точек зрения. Примеры цели, границы и точки зрения приведены на рис. 3.6.19а.

Синтаксис графического языка IDEF0 включает блоки, стрелки, диаграммы и правила.

Блоки представляют функции, определяемые как деятельность, процесс, операция, действие или преобразование (см. ниже). Стрелки представляют данные или материальные объекты, связанные с функциями. Правила определяют, как следует применять компоненты; диаграммы обеспечивают формат графического и словесного описания моделей. Формат образует основу для управления конфигурацией модели.



Блок представляет собой прямоугольник, внутри которого помещается его имя и номер. Имя должно быть активным глаголом или глагольным оборотом, описывающим функцию. Номер блока размещается в правом нижнем углу. Номера блоков использую для их идентификации на диаграмме и в соответствующем тексте. Пример блока приведен на рис. 3.6.20.

Рис. 3.6.20. Пример блока

Поскольку модели IDEF0 моделируют систему как множество иерархически вложенных функций, то в первую очередь должна быть определена функция, описывающая систему в целом – контекстная функция . В IDEF0 эта контекстная функция представляется в виде одного прямоугольника. Пример такой контекстной функции приведен на рис.3.6.19а.

Любой блок может быть декомпозирован на составляющие его блоки. Декомпозицию часто ассоциируют с моделированием "сверху вниз", однако это не совсем верно. Функциональную декомпозицию корректнее определять как моделирование «снаружи внутрь» , при котором рассматриваем систему наподобие луковицы, с которой последовательно снимаются слои.

Описание любого блока должно как минимум включать описание объектов, которые блок создает в результате своей работы ("выхода") и объектов, которые блок потребляет или преобразует ("вход").


Рис.3.6.19а. Пример такой контекстной функции

Рис. 3.6.19 б. Пример диаграммы IDEF0


Рис. 3.6.19 в. Пример диаграммы IDEF0

Рис. 3.6.19 г. Пример диаграммы IDEF0

В IDEF0 также моделируются управление и механизмы исполнения. Под управлением понимаются объекты, воздействующие на способ, которым блок преобразует вход в выход. Механизм исполнения – объекты, которые непосредственно выполняют преобразование входа в выход, но остаются неизменными .

I (Input) – вход – то, что потребляется в ходе выполнения процесса;

С (Control) – управление – ограничения и инструкции, влияющие на ход выполнения процесса;

О (Output) – выход – то, что является результатом выполнения процесса;

М (Mechanism) – исполняющий механизм – то, что используется для выполнения процесса, но остается неизменным.

На рис. 3.6.21 представлены четыре возможных типа стрелок в IDEF0, каждый из которых соединяется с определенной стороной функционального блока.

Рис. 3.6.21. Каждый тип стрелки соединяется с определенной стороной функционального блока

Для названия стрелок, как правило, употребляются имена существительные. Как и в случае с функциональными блоками, присвоение имен всем стрелкам на диаграмме является необходимым условием для понимания сути изображенного. Примеры наименований стрелок приведены на рис. 3.6.19 а, 3.6.19 б, 3.6.19 в, 3.6.19 г.

Дадим подробное назначение каждой стрелки.

Стрелки входа. Вход, представляет собой сырье или информацию, потребляемую или преобразуемую функциональным блоком для производства выхода. Стрелки входа всегда направлены в левую сторону прямоугольника, обозначающего в IDEF0 функциональный блок. Наличие входных стрелок на диаграмме не является обязательным , так как возможно, что некоторые блоки ничего не преобразуют и не изменяют. Примером блока, не имеющего входа, может служить принятие решения руководством , где анализируется несколько факторов, но ни один из них непосредственно не преобразуется и не потребляется в результате принятия какого-либо решения.

Стрелки управления. Стрелки управления отвечают за регулирование того, как и когда выполняется функциональный блок. Так как управление контролирует поведение функционального блока для обеспечения создания желаемого выхода, каждый функциональный блок должен иметь как минимум одну стрелку управления. Стрелки управления всегда входят в функциональный блок сверху.

Управление часто существует в виде правил, инструкций, законов, политики, набора необходимых процедур или стандартов. Влияя на работу блока, оно само остается неизменным . Может оказаться, что целью функционального блока является как раз изменение того или иного правила, инструкции, стандарта и т.п. В этом случае стрелка, содержащая соответствующую информацию, должна рассматриваться не как управление, а как вход функционального блока.

Управление можно рассматривать как специфический вид входа. В случаях, когда неясно, относить ли стрелку к входу или к управлению, предпочтительно относить ее к управлению до момента, пока неясность не будет разрешена.

Стрелки выхода . Выход – это продукция или информация, получаемая в результате работы функционального блока. Каждый блок должен иметь как минимум один выход. Действие, которое не имеет никакого четко определяемого выхода, желательно не моделировать вообще или это один из первых кандидатов на исключение из модели.

При моделировании непроизводственных предметных областей выходами, как правило, являются данные, в каком-либо виде обрабатываемые функциональным блоком. В этом случае важно, чтобы названия стрелок входа и выхода были достаточно различимы по своему смыслу. Например, блок "Прием пациентов" может иметь стрелку "Данные о пациенте" как на входе, так и на выходе. В такой ситуации входящую стрелку можно назвать "Предварительные данные о пациенте", а исходящую – "Подтвержденные данные о пациенте".

Стрелки механизма исполнения . Механизмы являются ресурсом , который непосредственно исполняет моделируемое действие. С помощью механизмов исполнения могут моделироваться: ключевой персонал, техника и/или оборудование . Стрелки механизма исполнения могут отсутствовать, в случае если оказывается, что они не являются необходимыми для достижения поставленной цели моделирования.

Комбинированные стрелки . В IDEF0 существует пять основных видов комбинированных стрелок: 1) выход – вход, 2) выход – управление, 3) выход – механизм исполнения, 4) выход – обратная связь на управление и 5) выход – обратная связь на вход.

1) Стрелка выход – вход применяется, когда один из блоков должен полностью завершить работу перед началом работы другого блока. Так, на рис. 3.6.22 формирование счета должно предшествовать приему заказа.

Рис. 3.6.22. Комбинация стрелок выход – вход

2) Стрелка выход – управление отражает ситуацию преобладания одного блока над другим, когда один блок управляет работой другого . На рис. 3.6.23 принципы формирования инвестиционного портфеля влияют на поведение брокеров на бирже.

Рис. 3.6.23. Комбинированная стрелка выход – управление

3) Стрелки выход – механизм исполнения встречаются реже и отражают ситуацию, когда выход одного функционального блока применяется в качестве инструментария для работы другого блока. На рис. 3.6.24 зажим, используемый для закрепления детали, должен быть собран для того, чтобы выполнить сборку детали.

4) Обратные связи на вход и на управление применяются в случаях, когда зависимые блоки формируют обратные связи для управляющих ими блоков. На рис. 3.6.25 получаемая от брокеров информация о текущих биржевых курсах применяется для корректировки стратегии игры на бирже.

Рис. 3.6.24. Комбинированная стрелка выход – механизм исполнения

Рис. 3.6.25. Комбинированная стрелка выход – обратная связь на управление

5) Стрелка выход – обратная связь на вход обычно применяется для описания циклов повторной обработки чего-либо (рис. 3.6.26). Кроме того, связи выход – обратная связь на вход могут применяться в случае, если бракованная продукция может заново использоваться в качестве сырья, как это происходит, например, в процессе производства оконного стекла, когда разбитое стекло перемалывается и переплавляется заново вместе с исходным сырьем.

Рис. 3.6.26. Комбинированная стрелка выход – обратная связь на вход

Разбиение и соединение стрелок. Выход функционального блока может использоваться в нескольких других блоках. Фактически чуть ли не главная ценность IDEF0 заключается в том, что эта методология помогает выявить взаимозависимости между блоками системы. Соответственно IDEF0 предусматривает как разъединение, так и соединение стрелок на диаграмме. Разъединенные на несколько частей стрелки могут иметь наименования, отличающиеся от наименования исходной стрелки. Исходная и разъединенные (или объединенные) стрелки в совокупности называются связанными . Такая техника обычно применяется для того, чтобы отразить использование в процессе только части сырья или информации, обозначаемой исходной стрелкой (рис. 3.6.27). Аналогичный подход применяется по отношению к объединенным стрелкам.

Рис.3.6.27. Разъединенная на две части и переименованная стрелка

На IDEF0-диаграммах есть еще стрелки вида (¯). Такие стрелки называют туннелями. Они связаны с понятием связанных стрелок, которое используется для управления уровнем детализации диаграмм. На рис. 3.6.28, например, стрелка "корпоративная информационная система" – важный механизм исполнения для данной диаграммы, но, возможно, она более нигде не используется в модели. Туннель в данном случае используется как альтернатива загромождению родительских диаграмм помещением на них несущественных для их уровня стрелок.

Рис. 3.6.28. Пример применения туннеля

Кроме того, туннели применяются для отражения ситуации, когда стрелка, присутствующая на родительской диаграмме, отсутствует в диаграмме декомпозиции соответствующего блока. На рис. 3.6.29 туннель у стрелки "модуль производственного отдела" обозначает, что на диаграмме декомпозиции производственного отдела отсутствует стрелка механизма управления с соответствующим наименованием.

Полностью составленная IDEF0-диаграмма любого уровня содержит на своих полях служебную информацию, которая состоит из хорошо выделенных верхнего и нижнего колонтитулов (заголовка и "подвала"). Элементы заголовка используются для отслеживания процесса создания модели. Элементы "подвала" отображают наименование модели, к которой относится диаграмма, и показывают ее расположение относительно других диаграмм модели.

Все элементы заголовка диаграммы перечислены в табл. 3.1.6.

Рис. 3.6.29. Пример применения туннеля

Таблица 3.1.6. Элементы заголовка диаграммы IDEF0

Поле Назначение
USED AT Используется для отражения внешних ссылок на данную диаграмму (заполняется на печатном документе вручную)
Author, date, project Содержит ФИО автора диаграммы, дату создания, дату последнего внесения изменений, наименование проекта, в рамках которого она создавалась
Notes 1 ... 10 При ручном редактировании диаграмм пользователи могут зачеркивать цифру каждый раз, когда они вносят очередное исправление
Status Статус отражает состояние разработки или утверждения данной диаграммы. Это поле используется для реализации формального процесса публикации с шагами пересмотра и утверждения
Working Новая диаграмма, глобальные изменения или новый автор для существующей диаграммы
Draft Диаграмма достигла некоторого приемлемого для читателей уровня и готова для представления на утверждение
Recommended Диаграмма одобрена и утверждена. Какие-либо изменения не предвидятся
Publication Диаграмма готова для окончательной печати и публикации
Reader ФИО читателя
Date Дата знакомства читателя с диаграммой
Context Набросок расположения функциональных блоков на родительской диаграмме, на котором подсвечен декомпозируемый данной диаграммой блок. Для диаграммы самого верхнего уровня (контекстной диаграммы ) в поле помещается контекст ТОР

Все элементы "подвала" диаграммы перечислены в табл. 3.1.7.

Таблица 3.1.7. Элементы "подвала" диаграммы IDEF0

Поле Назначение
Node Номер диаграммы, совпадающий с номером родительского функционального блока
Title Имя родительского функционального блока
Number (еще называют С-Number) Уникальный идентификатор данной версии данной диаграммы. Таким образом, каждая новая версия данной диаграммы будет иметь новое значение в этом поле. Как правило, С-Number состоит из инициалов автора (которые предполагаются уникальными среди всех аналитиков проекта) и последовательного уникального идентификатора, например SDO005. При публикации эти номера могут быть заменены стандартными номерами страниц. Если диаграмма замещает другую диаграмму, номер заменяемой диаграммы может быть заключен в скобки – SDO005 (SDO004). Это обеспечивает хранение истории изменений всех диаграмм модели

Для каждого рецензента автором, как правило, подготавливается свой набор диаграмм. Предложения по изменениям и исправлениям возвращаются рецензентами автору для внесения их в модель. При возникновении разногласий между автором и рецензентом спорная диаграмма обычно рассылается всем рецензентам для достижения группового консенсуса.

Формально механизм рецензирования и модификации диаграмм поддерживается полями Status и нумерацией диаграмм, контроль истории изменений – полем Field (см. табл. 3.1.6).

Ни одна модель не должна строиться без ясного осознания объекта и целей моделирования. Выбранное определение цели моделирования должно отвечать на следующие вопросы:

Почему моделируется данный процесс?

Что выявит данная модель?

Как, ознакомившиеся с этой моделью лица смогут ее применить? Следующее предложение может служить примером формулирования цели моделирования. Выявить задачи каждого работника компании и понять в целом взаимосвязь между отдельно взятыми задачами для разработки руководства по обучению новых сотрудников.

Модели строятся для того, чтобы ответить на набор поставленных вопросов. Такие вопросы формулируются на ранних стадиях моделирования и впоследствии служат основой для четкого и краткого определения цели моделирования. Примерами таких вопросов могут быть:

Каковы задачи менеджера?

Каковы задачи клерка?

Кто контролирует работу?

Какая технология нужна для выполнения каждого шага? и т.п.